1.

MATH 579: Combinatorics
Exam 3 Solutions

How many anagrams does AAAABBBCCCCD have?
There are 4 A’s, 3 B’s, 4 C s, 1 D: 12 letters altogether. The number of anagrams is counted by the multinomial
coeflicient (4324 1) = 4,3,4,1, = 138600.

Let n € Ng. Prove that 2" = Z (Z)
k=0

We begin with Newton’s Binomial Theorem, which states that (z +y)" = > ;- (})a*y™~*, which applies
since n € Ng. We take v =y = 1, getting 2" = >, (Z) However, for k > n, (2) =0, so in fact the sum is
finite, equalling >~ (7).

Prove the “Hexagon Identity”:
n—1 n n—+1 n—1 n n—+1
For all £k € N = .
remae < 5 ><k—1><k+1> <k—1>(k+1)< 5 )
For one bonus point, explain why it’s called the Hexagon identity.
METHOD 1: We will repeatedly use 222 = 2%(z — o). (") (,",) (Zﬁ) = (";!1)& (’,;k_;ll)! ("(Zi)lk)% =
_ n—1)k=1 (n Epk=lin—(k—1))(n—k
g (n — DFn = 1= (k= D)=t (n + DA+ 1 = k)t = ((k—)l)! = : (k(+1)l))( } =
(n—1)E=L (n+1)E nE(n—k) _ (n—1)E=L (n41)E pr+t n+1 n
(E—1)! B (R0 (k—1)! kL (k+1)! (k 1)( k )(k+1)'
METHOD 2: We first consider the special case of n € Z with n — 1 > k. We have (";1) (kfl) (Zﬁ) =
(n—1)! n! (n+1)! (n—1)! n! (n+1)! _ /n—1 n n+1
El(n—k—1)1 (h—D)I(n—k+ 1)1 G+1)I(n—FE) — (k=1)I(n—Fk)I (k+1)'(n E—D)! Kl(n—k+1)! ( )(k+1)( k ) Now, we allow

n to be a variable, and k a fixed constant. Both sides of the equation are polynomials in n, of fixed degree
kE+ (k+1)+4 (k—1) =3k, and they agree for infinitely many values (namely, for all n € Z with n — 1 > k).
Hence the polynomials must be equal, i.e. the identity is proved for all n.

BONUS: It has this name because the six coefficients form a hexagon, in Pascal’s triangle, around (2)

Let n € Ny. Prove that Z k—|—1( )

We begin with Newton’s Blnomlal Theorem, which states that (z +y)" = > 4, (%)a*y"~*, which applies
since n € No. This is a finite sum, since (}) = 0 for k > n. Setting y = 1, we get (z+1)" =>,_, (})z*. In-

tegrating both sides, we get % =C+> 7, ( ) k+1 We find C = 1 7 by taking z = 0. Next, we take
)k+1

xr=—1toget 0= ﬁ + Zk:o (k)( T . We multiply both sides by 71 to get 0 = n+1 + Zk —0 ( )(,Hl_)l )
which is equivalent to what we’re proving.

1 = %
Let m,n € Ny. Prove that (m+:+ ) :;<m; )

We begin with the Hockey Stick identity, which states that for all n, k € N, (":_’H‘l) = 27:: (i) We leave

n as n, and take k = m, both in Ny. This gives (”+m+1) =y (3) By the symmetry identity (since

m+1 Jj=m \m

n € Np), (";’_’gl) = ((n+£j{;_+(1m+l)) = ("*"*1). Hence we have (") = Z;L;ZL (7). Lastly we

make the substitution £ = j — m. As j varies from m to n + m, k varies from 0 to n. Hence we have

(M) = 3, ().
m+1) 1
Let n € No. provethat<:_:_1)22(z>(n: )

k=0
We begin with the Chu-Vandermonde identity, which states that for k € No, ("}¥) = ZI; 0 (5) (%) Next,

we take z = n and y = kK = n + 1, observe that n € Ny, and get (27::_"11) = nH ( )((n?_’;; ]) Now, by the
2n+

j
symmetry identity (since n+1 > j and n+1 € Z), ( ) = (”H) so we get ( ) = ;L+01 (])(”jl)

(n+1)—j
nil) (Zﬂ) = 0, so we may as well omit it.

Finally, we note that the last summand is (



