
MATH 579: Combinatorics
Exam 3 Solutions

1. How many anagrams does AAAABBBCCCCD have?
There are 4 A’s, 3 B’s, 4 C’s, 1 D: 12 letters altogether. The number of anagrams is counted by the multinomial
coefficient

(
12

4,3,4,1

)
= 12!

4!3!4!1! = 138600.

2. Let n ∈ N0. Prove that 2n =

n∑
k=0

(
n

k

)
.

We begin with Newton’s Binomial Theorem, which states that (x + y)n =
∑

k≥0

(
n
k

)
xkyn−k, which applies

since n ∈ N0. We take x = y = 1, getting 2n =
∑

k≥0

(
n
k

)
. However, for k > n,

(
n
k

)
= 0, so in fact the sum is

finite, equalling
∑n

k=0

(
n
k

)
.

3. Prove the “Hexagon Identity”:

For all k ∈ N,

(
n− 1

k

)(
n

k − 1

)(
n + 1

k + 1

)
=

(
n− 1

k − 1

)(
n

k + 1

)(
n + 1

k

)
.

For one bonus point, explain why it’s called the Hexagon identity.

METHOD 1: We will repeatedly use xa+b = xa(x − a)b.
(
n−1
k

)(
n

k−1

)(
n+1
k+1

)
= (n−1)k

k!
nk−1

(k−1)!
(n+1)k+1

(k+1)! =

1
(k−1)!k!(k+1)! (n − 1)k−1(n − 1 − (k − 1))1nk−1(n + 1)k(n + 1 − k)1 = (n−1)k−1

(k−1)!
(n+1)k

k!
nk−1(n−(k−1))(n−k)

(k+1)! =

(n−1)k−1

(k−1)!
(n+1)k

k!
nk(n−k)
(k+1)! = (n−1)k−1

(k−1)!
(n+1)k

k!
nk+1

(k+1)! =
(
n−1
k−1

)(
n+1
k

)(
n

k+1

)
.

METHOD 2: We first consider the special case of n ∈ Z with n − 1 ≥ k. We have
(
n−1
k

)(
n

k−1

)(
n+1
k+1

)
=

(n−1)!
k!(n−k−1)!

n!
(k−1)!(n−k+1)!

(n+1)!
(k+1)!(n−k)! = (n−1)!

(k−1)!(n−k)!
n!

(k+1)!(n−k−1)!
(n+1)!

k!(n−k+1)! =
(
n−1
k−1

)(
n

k+1

)(
n+1
k

)
. Now, we allow

n to be a variable, and k a fixed constant. Both sides of the equation are polynomials in n, of fixed degree
k + (k + 1) + (k − 1) = 3k, and they agree for infinitely many values (namely, for all n ∈ Z with n− 1 ≥ k).
Hence the polynomials must be equal, i.e. the identity is proved for all n.

BONUS: It has this name because the six coefficients form a hexagon, in Pascal’s triangle, around
(
n
k

)
.

4. Let n ∈ N0. Prove that
1

n + 1
=

n∑
k=0

(−1)k

k + 1

(
n

k

)
.

We begin with Newton’s Binomial Theorem, which states that (x + y)n =
∑

k≥0

(
n
k

)
xkyn−k, which applies

since n ∈ N0. This is a finite sum, since
(
n
k

)
= 0 for k > n. Setting y = 1, we get (x+ 1)n =

∑n
k=0

(
n
k

)
xk. In-

tegrating both sides, we get (x+1)n+1

n+1 = C +
∑n

k=0

(
n
k

)
xk+1

k+1 . We find C = 1
n+1 by taking x = 0. Next, we take

x = −1 to get 0 = 1
n+1 +

∑n
k=0

(
n
k

) (−1)k+1

k+1 . We multiply both sides by −1 to get 0 = −1
n+1 +

∑n
k=0

(
n
k

) (−1)k

k+1 ,
which is equivalent to what we’re proving.

5. Let m,n ∈ N0. Prove that

(
m + n + 1

n

)
=

n∑
k=0

(
m + k

k

)
.

We begin with the Hockey Stick identity, which states that for all n, k ∈ N0,
(
n+k+1
k+1

)
=
∑n+k

j=k

(
j
k

)
. We leave

n as n, and take k = m, both in N0. This gives
(
n+m+1
m+1

)
=
∑n+m

j=m

(
j
m

)
. By the symmetry identity (since

n ∈ N0),
(
n+m+1
m+1

)
=
(

n+m+1
(n+m+1)−(m+1)

)
=
(
n+m+1

n

)
. Hence we have

(
n+m+1

n

)
=
∑n+m

j=m

(
j
m

)
. Lastly we

make the substitution k = j − m. As j varies from m to n + m, k varies from 0 to n. Hence we have(
n+m+1

n

)
=
∑n

k=0

(
m+k
m

)
.

6. Let n ∈ N0. Prove that

(
2n + 1

n + 1

)
=

n∑
k=0

(
n

k

)(
n + 1

k

)
.

We begin with the Chu-Vandermonde identity, which states that for k ∈ N0,
(
x+y
k

)
=
∑k

j=0

(
x
j

)(
y

k−j

)
. Next,

we take x = n and y = k = n + 1, observe that n ∈ N0, and get
(
2n+1
n+1

)
=
∑n+1

j=0

(
n
j

)(
n+1

(n+1)−j

)
. Now, by the

symmetry identity (since n + 1 ≥ j and n + 1 ∈ Z),
(

n+1
(n+1)−j

)
=
(
n+1
j

)
, so we get

(
2n+1
n+1

)
=
∑n+1

j=0

(
n
j

)(
n+1
j

)
.

Finally, we note that the last summand is
(

n
n+1

)(
n+1
n+1

)
= 0, so we may as well omit it.


