MATH 579: Combinatorics

Exam 3 Solutions

1. How many anagrams does $A A A A B B B C C C C D$ have?

There are 4 A's, 3 B's, 4 C's, 1 D : 12 letters altogether. The number of anagrams is counted by the multinomial coefficient $\binom{12}{4,3,4,1}=\frac{12!}{4!3!4!1!}=138600$.
2. Let $n \in \mathbb{N}_{0}$. Prove that $2^{n}=\sum_{k=0}^{n}\binom{n}{k}$.

We begin with Newton's Binomial Theorem, which states that $(x+y)^{n}=\sum_{k \geq 0}\binom{n}{k} x^{k} y^{n-k}$, which applies since $n \in \mathbb{N}_{0}$. We take $x=y=1$, getting $2^{n}=\sum_{k \geq 0}\binom{n}{k}$. However, for $k>n,\binom{\bar{n}}{k}=0$, so in fact the sum is finite, equalling $\sum_{k=0}^{n}\binom{n}{k}$.
3. Prove the "Hexagon Identity":

For all $k \in \mathbb{N},\binom{n-1}{k}\binom{n}{k-1}\binom{n+1}{k+1}=\binom{n-1}{k-1}\binom{n}{k+1}\binom{n+1}{k}$.
For one bonus point, explain why it's called the Hexagon identity.
METHOD 1: We will repeatedly use $x \frac{a+b}{\underline{a}}=x^{\underline{a}}(x-a)^{\underline{b}} . \quad\binom{n-1}{k}\binom{n}{k-1}\binom{n+1}{k+1}=\frac{(n-1)^{\underline{k}}}{k!} \frac{n \underline{k-1}}{(k-1)!} \frac{(n+1)^{k+1}}{(k+1)!}=$ $\frac{1}{(k-1)!k!(k+1)!}(n-1) \frac{k-1}{}(n-1-(k-1))^{\underline{1}} n \frac{k-1}{}(n+1)^{\underline{k}}(n+1-k)^{\underline{1}}=\frac{(n-1)^{k-1}}{(k-1)!} \frac{(n+1)^{k}}{k!} \frac{n \frac{k-1}{}(n-(k-1))(n-k)}{(k+1)!}=$

METHOD 2: We first consider the special case of $n \in \mathbb{Z}$ with $n-1 \geq k$. We have $\binom{n-1}{k}\binom{n}{k-1}\binom{n+1}{k+1}=$ $\frac{(n-1)!}{k!(n-k-1)!} \frac{n!}{(k-1)!(n-k+1)!} \frac{(n+1)!}{(k+1)!(n-k)!}=\frac{(n-1)!}{(k-1)!(n-k)!} \frac{n!}{(k+1)!(n-k-1)!} \frac{(n+1)!}{k!(n-k+1)!}=\binom{n-1}{k-1}\binom{n}{k+1}\binom{n+1}{k}$. Now, we allow n to be a variable, and k a fixed constant. Both sides of the equation are polynomials in n, of fixed degree $k+(k+1)+(k-1)=3 k$, and they agree for infinitely many values (namely, for all $n \in \mathbb{Z}$ with $n-1 \geq k$). Hence the polynomials must be equal, i.e. the identity is proved for all n.
BONUS: It has this name because the six coefficients form a hexagon, in Pascal's triangle, around $\binom{n}{k}$.
4. Let $n \in \mathbb{N}_{0}$. Prove that $\frac{1}{n+1}=\sum_{k=0}^{n} \frac{(-1)^{k}}{k+1}\binom{n}{k}$.

We begin with Newton's Binomial Theorem, which states that $(x+y)^{n}=\sum_{k \geq 0}\binom{n}{k} x^{k} y^{n-k}$, which applies since $n \in \mathbb{N}_{0}$. This is a finite sum, since $\binom{n}{k}=0$ for $k>n$. Setting $y=1$, we get $(x+1)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}$. Integrating both sides, we get $\frac{(x+1)^{n+1}}{n+1}=C+\sum_{k=0}^{n}\binom{n}{k} \frac{x^{k+1}}{k+1}$. We find $C=\frac{1}{n+1}$ by taking $x=0$. Next, we take $x=-1$ to get $0=\frac{1}{n+1}+\sum_{k=0}^{n}\binom{n}{k} \frac{(-1)^{k+1}}{k+1}$. We multiply both sides by -1 to get $0=\frac{-1}{n+1}+\sum_{k=0}^{n}\binom{n}{k} \frac{(-1)^{k}}{k+1}$, which is equivalent to what we're proving.
5. Let $m, n \in \mathbb{N}_{0}$. Prove that $\binom{m+n+1}{n}=\sum_{k=0}^{n}\binom{m+k}{k}$.

We begin with the Hockey Stick identity, which states that for all $n, k \in \mathbb{N}_{0},\binom{n+k+1}{k+1}=\sum_{j=k}^{n+k}\binom{j}{k}$. We leave n as n, and take $k=m$, both in \mathbb{N}_{0}. This gives $\binom{n+m+1}{m+1}=\sum_{j=m}^{n+m}\binom{j}{m}$. By the symmetry identity (since $\left.n \in \mathbb{N}_{0}\right),\binom{n+m+1}{m+1}=\binom{n+m+1}{(n+m+1)-(m+1)}=\binom{n+m+1}{n}$. Hence we have $\binom{n+m+1}{n}=\sum_{j=m}^{n+m}\binom{j}{m}$. Lastly we make the substitution $k=j-m$. As j varies from m to $n+m, k$ varies from 0 to n. Hence we have $\binom{n+m+1}{n}=\sum_{k=0}^{n}\binom{m+k}{m}$.
6. Let $n \in \mathbb{N}_{0}$. Prove that $\binom{2 n+1}{n+1}=\sum_{k=0}^{n}\binom{n}{k}\binom{n+1}{k}$.

We begin with the Chu-Vandermonde identity, which states that for $k \in \mathbb{N}_{0},\binom{x+y}{k}=\sum_{j=0}^{k}\binom{x}{j}\binom{y}{k-j}$. Next, we take $x=n$ and $y=k=n+1$, observe that $n \in \mathbb{N}_{0}$, and get $\binom{2 n+1}{n+1}=\sum_{j=0}^{n+1}\binom{n}{j}\binom{n+1}{(n+1)-j}$. Now, by the symmetry identity (since $n+1 \geq j$ and $n+1 \in \mathbb{Z}),\binom{n+1}{(n+1)-j}=\binom{n+1}{j}$, so we get $\binom{2 n+1}{n+1}=\sum_{j=0}^{n+1}\binom{n}{j}\binom{n+1}{j}$. Finally, we note that the last summand is $\binom{n}{n+1}\binom{n+1}{n+1}=0$, so we may as well omit it.

